SIMULASI PENGARUH UKURAN PARTIKEL DAN *EQUIVALENCE RATIO* DALAM PROSES GASIFIKASI TANDAN KOSONG KELAPA SAWIT

SIMULATION OF PARTICLE SIZE AND EQUIVALENCE RATIO EFFECT ON GASIFICATION PROCESS OF PALM EMPTY FRUIT BUNCH

Sabar Pangihutan Simanungkalit, Dieni Mansur, dan Nino Rinaldi

Pusat Penelitian Kimia – LIPI Kawasan PUSPIPTEK – Serpong (Banten – Indonesia) Email : <u>saba004@lipi.go.id</u>

Diterima : 15 Juli 2015, Revisi : 04 Agustus 2015, Disetujui : 10 September 2015

ABSTRAK

Pada studi ini telah dilakukan simulasi proses gasifikasi limbah tandan kosong kelapa sawit (TKKS) menggunakan fixed bed gasifier tipe throat downdraft dengan memvariasikan ukuran partikel bahan umpan TKKS dan equivalence ratio (ER). Laju konsumsi bahan bakar adalah 10 kg/jam dengan udara sebagai media oksidasi dan lama waktu proses dalam 1 batch adalah 1 jam. Simulasi dilakukan dengan pendekatan dua dimensi (2D) menggunakan perangkat lunak Computational Fluid Dynamics (CFD) ANSYS FLUENT 14. Hasil simulasi menunjukkan bahwa besar equivalence ratio (ER) ideal untuk proses gasifikasi limbah TKKS berbentuk pelet ber-diameter (Φ) 6 mm dan 8 mm adalah $0,1 \leq ER \leq 0,2$. Variasi ER mempengaruhi HHV (Higher Heating Value) syngas hasil gasifikasi, efisiensi karbon (nc), efisiensi gasifikasi serta distribusi temperatur dalam reaktor gasifikasi. Variasi ukuran partikel tidak memberikan efek yang signifikan dalam proses gasifikasi.

Kata kunci: CFD, gasifikasi TKKS, ukuran partikel, equivalence ratio

ABSTRACT

In this study, a simulation for gasification process of oil palm empty fruit bunches waste (OPEFB) using a fixed bed gasifier (throat downdraft) by varying the particle size of OPEFB and equivalence ratio (ER) was investigated. The rate of fuel consumption was 10 kg/h with air as the oxidizing medium and 1 hour process time for 1 batch. Simulation was performed with twodimensional approach (2D) using Computational Fluid Dynamics (CFD) ANSYS FLUENT 14 software. Simulation results show that ideal amount of equivalence ratio (ER) for gasification process of OPEFB pellets with diameter (φ) of 6 mm and 8 mm is $0.1 \leq ER \leq 0.2$. ER variation affects the higher heating value of syngas (HHV), the carbon efficiency (η_c), gasification efficiency and temperature distribution in the gasification reactor. Variations in particle size did not have a significant effect in the gasification process.

Keywords: CFD, OPEFB gasification, particle size, equivalence ratio

PENDAHULUAN

Pada proses gasifikasi, bahan bakar solid (biomassa) dikonversi menjadi bahan dalam reaktor bakar gas gasifikasi (gasifier) dengan media oksidasi seperti: udara, steam, dan Oksigen (O₂). Salah satu dapat dikembangkan biomassa yang sebagai energi alternatif dengan proses gasifikasi adalah limbah tandan kosong kelapa sawit (TKKS). TKKS merupakan limbah yang dihasilkan oleh industri kelapa sawit dalam jumlah yang besar, karena dalam pemrosesan 1 ton tandan buah segar kelapa sawit akan dihasilkan limbah TKKS sekitar 23 % atau 230 kg TKKS⁽¹⁾. Indonesia merupakan salah satu Negara penghasil kelapa sawit terbesar didunia. Hingga tahun 2014, luas perkebunan kelapa sawit di Indonesia mencapai 10,85 juta hektar dengan produksi CPO (crude palm oil) 28,02 juta ton/tahun⁽²⁾. Hal ini membuat ketersediaan limbah TKKS di Indonesia sangat besar dan belum dimanfaatkan secara optimal.

Salah satu jenis gasifier berdasarkan kontak antara solid dan gas adalah fixed bed (unggun diam), dan gasifier jenis ini dapat diaplikasikan dalam rentang daya antara 10 kW hingga 10 MW⁽³⁾. Sementara itu, berdasarkan arah aliran gas gasifier unggun diam dibedakan atas updraft gasifier dan downdraft gasifier^(4,5). Pada updraft gasifier, gas produk gasifikasi mengalir ke atas (berlawanan arah dengan aliran bahan umpan) sedangkan untuk downdraft gasifier gas produk gasifikasi mengalir ke bawah (searah dengan aliran bahan umpan). Gasifier jenis unggun diam merupakan jenis gasifier yang simpel dan aplikatif. Sekitar 89% proses gasifikasi batubara di dunia menggunakan gasifier unggun diam⁽⁶⁾. Gasifier unggun diam merupakan teknologi yang paling cocok untuk pemrosesan energi dari biomassa dan limbah padat perkotaan $^{(7)}$.

Penelitian tentang *downdraft gasifier* sebagian besar memanfaatkan biomassa sebagai bahan umpan. Penggunaan sisa serbuk gergaji dengan menerapkan sistem sirkulasi gas menunjukkan bahwa ukuran partikel dari serbuk gergaji menjadi sebuah permasalahan tersendiri dalam proses gasifikasi. Sedangkan dengan adanya sirkulasi gas meningkatkan kinerja dari gasifikasi secara keseluruhan⁽⁸⁾. Sementara itu, pemanfaatan limbah industri furniture dan potongan kayu (wood chip) sebagai bahan umpan dalam downdraft gasifier menyimpulkan bahwa batas *equivalence* ratio (ER) untuk proses gasifikasi serbuk gergaji dan potongan kayu yang ideal adalah antara $0.19 - 0.43^{(9)}$. Equivalence ratio (ER) adalah hasil bagi antara perbandingan jumlah udara dan bahan aktual bakar (terukur) dengan perbandingan jumlah udara dan bahan bakar stoichiometric. Dari hasil penelitian diatas, ukuran partikel biomassa dan equivalence ratio menjadi parameter yang penting dalam gasifikasi biomassa.

Penelitian-penelitian downdraft terus dilakukan baik dengan gasifer metode eksperimen maupun simulasi. Model tersebut simulasi dapat diklasifikasikan dalam 4 kelompok, yakni: (1) Kinetik, (2) Computational Fluid Dynamics (CFD), (3) Kesetimbangan termodinamika dan (4) Artificial neural *networks*⁽³⁾. CFD merupakan salah satu perangkat lunak untuk aplikasi dinamika fluida, dengan kemajuan dalam metode numerik dan teknologi perangkat keras (hardware) memungkinkan sangat digunakannya CFD untuk mensimulasikan proses gasifikasi⁽¹⁰⁾. Namun referensi tentang simulasi proses gasifikasi dalam gasifier unggun diam menggunakan CFD jumlahnya masih sangat sedikit⁽¹¹⁾. Oleh karena itu dalam studi ini telah dilakukan simulasi proses gasifikasi limbah TKKS dalam gasifier unggun diam (throat downdraft) menggunakan perangkat lunak CFD ANSYS FLUENT 14. Simulasi bertujuan untuk melihat pengaruh ukuran partikel dan *equivalence* ratio terhadap komposisi gas dan performa dari proses gasifikasi limbah TKKS.

METODOLOGI

Karakterisasi bahan umpan

Bahan umpan yang digunakan dalam studi ini adalah limbah TKKS berbentuk pelet berdiameter (ϕ) 6 mm dan 8mm, dimana hasil analisa ultimate dan proximate bahan tersebut umpan dinyatakan dalam Tabel 1^(12,13). Data-data dimasukkan sebagai tersebut properti material dalam simulasi CFD.

Konfigurasi geometri gasifier

Salah satu proses dalam tahap awal (*pre-processor*) simulasi CFD adalah mendefenisikan geometri model, dalam hal ini geometri *throat downdraft gasifier*. Geometri *downdraft gasifier* yang

digunakan dalam studi ini berdiameter (D) 30 cm dan tinggi (H) 135 cm $^{(14)}$. Letak tenggorokan (throat) dari gasifikasi adalah 45 cm dari dasar gasifier dengan diameter pipa inlet udara sebagai media oksidasi dan outlet syngas adalah 5 cm (Gb.1.a). Proses terhadap geometri meshing throat downdraft menggunakan gasifier perangkat lunak GAMBIT 2.3.16. Mesh dari throat downdraft gasifier dalam 2 dimensi (2D) ditunjukkan pada Gb.1.b, terdiri dari 2236 cell berbentuk elemen triangle tipe pave.

Tabel 1. Analisa proximate dan ultimateTKKS berbentuk pelet

	Ф6mm	$\Phi8mm$
Proximate analysis (wt.%)		
Moisture	11	11.3
Ash	7.9	7.9
Fixed Carbon	8.36	8.36
Volatiles (diff.)	72.74	72.44
Ultimate analysis (wt.%)		
Carbon	47.2	47.2
Hydrogen	6	6
Nitrogen	0.6	0.6
Oxygen (diff.)	38.2	38.2
Sulfur	0.12	0.12
LHV, MJ/kg (dry basis)	18.05	18.05
LHV, MJ/kg (dry basis)	19.35	19.35
Bulk density (kg/m^3)	630	580
Diameter (mm)	6	8
Stoichiometric AFR (kg/kg)*	5.87	5.87

Sebagaimana yang telah diketahui, untuk mencegah terjadinya pembakaran sempurna dalam proses gasifikasi maka jumlah media oksidasi (udara) harus dapat dikendalikan. Perbandingan jumlah bahan bakar dengan udara sebagai media oksidasi dalam proses gasifikasi biasanya dinyatakan dengan parameter *Equivalence Ratio* (ER). Variasi ER dalam studi ini adalah 0.10, 0.15, 0.20 dan 0.25 dengan masing-masing laju massa udara (W_b) = 1.6e⁻³, 2.4e⁻³, 3.2e⁻³ dan 4.0e⁻³ kg per detik.

Gambar 1. *Throat downdraft gasifier,* (a) Geometri, (b) *Mesh*

Model komputasi

Simulasi CFD dalam studi ini merupakan pendekatan 2 dimensi (2D), dimana untuk proses solver dan postprocessor digunakan perangkat lunak CFD ANSYS FLUENT 14 dengan model komputasi seperti ditampilkan dalam Tabel 2. Untuk memodelkan interaksi antara reaksi proses gasifikasi dengan turbulensi digunakan finite rate/eddy dissipation. Sementara itu, untuk model pergerakan partikel TKKS (*particle trajectory*) dalam gasifier maka dipakai model fase diskrit vang dikopel dengan fase kontinyu. Simulasi dilakukan hingga 3000 iterasi, dimana pada saat tersebut residual dari perhitungan tidak berubah lagi (konstan).

Model reaksi gasifikasi

Model reaksi proses gasifikasi yang digunakan dalam simulasi adalah:

a.	Reaks	Reaksi dekomposisi volatile ⁽¹⁵⁾						
	Volatil	$+0.437O_{2}$	\rightarrow	$0.95CO + 0.95H_2O + 0.014N_2$	(R1)			
b.	Reaks	si Karbon ⁽³⁾						
	С	$+ 0.5O_2$	\rightarrow	CO	(R2)			
	С	$+ CO_2$	\rightarrow	2CO	(R3)			
	С	$+ H_2O$	\rightarrow	$CO + H_2$	(R4)			
	С	$+ 2H_2$	\rightarrow	CH_4	(R5)			
	С	$+ O_2$	\rightarrow	CO_2	(R6)			
c.	Reaks	si fase gas ⁽³⁾						
	CO	$+ H_2O$	\leftrightarrow	$CO_2 + H_2$	(R7)			

Dimana Q_a adalah laju alir volume udara sebagai media oksidasi dari (Nm^{3}/jam) dan dinyatakan dalam persamaan 5. W_b adalah laju alir massa dari bahan umpan (kg/jam) dalam hal ini adalah TKKS, dan N₂% adalah persentase volume dari gas Nitrogen dalam syngas hasil gasifikasi. Sementara itu. Ho (MJ/Nm³) dan H_b (MJ/kg) adalah higher heating value dari syngas hasil gasifikasi dan biomassa (TKKS).

Dengan SA adalah stoichiometric air fuel ratio, FCR adalah fuel consumption rate (kg/jam) dan ρ_a adalah massa jenis udara = 1.2 kg/m³. Berdasarkan perhitungan, maka besarnya laju alir volume udara yang digunakan untuk variasi ER 0.10, 0.15, 0.20 dan 0.25 adalah 4.89, 7.34, 9.78 dan 12.22 Nm³/jam.

HASIL DAN PEMBAHASAN

Distribusi Temperatur

Distribusi temperatur merupakan salah satu parameter yang penting dalam proses gasifikasi, karena besarnya temperatur menunjukkan reaktifitas biomassa sebagai bahan bakar dalam proses gasifikasi. Semakin reaktif bahan akan meningkatkan bakar besaran temperatur dan produksi gas dalam proses gasifikasi, sedangkan bahan bakar yang kurang reaktif akan menghasilkan lebih banyak Nitrogen cair dan suhu yang rendah pada reaktor gasifikasi¹². Gambar. 2 menunjukkan grafik distribusi temperatur rata-rata hasil simulasi disepanjang tinggi reaktor gasifikasi. Dalam grafik tersebut terlihat bahwa untuk setiap variasi ER dan ukuran partikel TKKS, temperatur maksimum (±1200 °C) berada pada lokasi throat disekitar ujung pipa inlet udara. Hal dihubungkan dengan konsentrasi ini Oksigen paling banyak berada pada lokasi tersebut, sehingga reaksi oksidasi carbon mendominasi. Hasil simulasi pengaruh variasi ER dan ukuran partikel TKKS distribusi temperatur terhadap dalam gasifier memiliki tren yang sama dengan hasil eksperimen yang memanfaatkan kulit kayu pinus sebagai bahan umpan⁽¹⁷⁾. Penulis melaporkan semakin tinggi nilai ER maka jumlah udara yang masuk kedalam gasifier semakin banyak, sehingga temperatur pada zona oksidasi akan semakin tinggi. Sedangkan variasi ukuran partikel tidak memberikan pengaruh yang besar terhadap temperatur maksimum dalam gasifier.

Simulasi Pengaruh Ukuran Partikel dan Equivalence Ratio dalam Proses Gasifikasi Tandan Kosong Kelapa Sawit : Sabar Pangihutan Simanungkalit, dkk.

	Model	Settings	Information
	Space	2D	Pressure based
	Time	Steady	-
	Viscous	Realizable k-epsilon turbulence model	Turbulence intensity = 10%
Models Setting	Wall Treatment	Standard Wall Functions	-
	Heat Transfer	Enabled	-
	Species Transport	Reacting (9 species)	Volumetric and Particle surface
	Discrete phase	Surface injection	Combustion
	Name	Type	Information
	Fluid	Fluid	Air (20% O ₂)
	Outlet-syngas	Pressure outlet	-
Boundary Condition	Inlet-air	Mass-flow-inlet	$1.6e^{-3} kg/s (ER=0.10)$ $2.4e^{-3} kg/s (ER=0.15)$ $3.2e^{-3} kg/s (ER=0.20)$ $4.0e^{-3} kg/s (ER=0.25)$
	Inlet-tkks	Mass-flow-inlet	$2.78e^{-3} kg/s$ $\Phi = 6mm and 8mm$
	Drying	Wall (mixed)	Convection and Radiation
	Pyrolysis	Wall (mixed)	Convection and Radiation
	Oxidation	Wall (mixed)	Convection and Radiation
	Reduction	Wall (mixed)	Convection and Radiation
	Variable	Discretization Scheme	Information
Solvers	Pressure	PRESTO!	-
	Momentum	Second Order Upwind	-
	Turbulent Kinetic Energy	Second Order Upwind	-
	Turbulent Dissipation Rate	Second Order Upwind	-
	Energy	Second Order Upwind	-

Tabel 2. Model komputasi

$$\begin{aligned} HHV &= (H_2\% * 0.03052 + C0\% * 0.03018 + CH_4\% * 0.095) * 4.2 \, (MJ/Nm^3) \end{aligned} \tag{1} \\ Y &= \frac{Q_a * 0.79}{W_b * N_2\%} \left(\frac{Nm^3}{kg} \right) \end{aligned} \tag{2} \\ \eta_C &= \frac{Y(C0\% + CO_2\% + CH_4\%) * 12}{22.4 * C\%} * 100\% \end{aligned} \tag{3} \\ \eta &= \frac{H_g * Y}{H_b} * 100\% \end{aligned} \tag{4}$$

$$Q_{a} = \frac{ER * FCR * SA}{\rho_{a}} (Nm^{3}/jam)$$
(5)

Gambar 2. Distribusi temperatur disepanjang tinggi gasifier, (a) 6mm, (b) 8mm

Komposisi gas

Komposisi syngas (%) hasil simulasi gasifikasi TKKS yang keluar melalui outlet untuk setiap ukuran partikel dengan variasi ER ditunjukkan pada Gb.3. Dari hasil simulasi, didapatkan tren yang sama dengan hasil penelitian gasifikasi TKKS yang telah dilakukan sebelumnya^(12,13), yakni semakin besar nilai ER maka konsentrasi gas CO, H₂ dan CH₄ dalam komposisi syngas akan menurun, sedangkan konsentrasi gas CO2 semakin meningkat. Pada variasi ER = 0.1, 0.15 dan konsentrasi CO 0.2 gas merupakan konsentrasi banyak paling dalam komposisi syngas, diikuti gas CO₂, H₂ dan CH₄. Hal ini berarti pada rentang variasi ER tersebut masih terjadi pembakaran tidak sempurna. Sementara itu, pada ER = 0.25 konsentrasi CO₂ sudah melebihi konsentrasi CO dalam komposisi syngas. Hal ini menandakan bahwa proses termokimia mendekati proses pembakaran sempurna (combustion). Komposisi gas H₂ dalam syngas cukup rendah, yakni ± 3 %, hal ini terjadi karena rendahnya kadar moisture dari TKKS yang digunakan sebagai bahan umpan dalam studi ini, yakni 11 – 11.3 %. Hasil yang sama juga didapatkan dalam penelitian gasifikasi serbuk kayu pinus, dengan peningkatan kadar moisture serbuk kayu pinus dari 10 % menjadi 25 % meningkatkan komposisi

gas H_2 dalam syngas dari 5 % menjadi 9 %⁽¹⁸⁾.

Nilai kalor gas

Tabel 3 menyatakan besarnya nilai kalor (HHV) dan *dry gas yield* (Y) hasil simulasi gasifikasi TKKS untuk setiap ukuran partikel TKKS dengan variasi ER. Besarnya HHV dan Y dihitung berdasarkan pers. (1) dan (2).

Untuk kedua ukuran partikel TKKS, HHV maksimum terdapat pada ER = 0.1. Pada kondisi ini konsentrasi combustible gas (CO, H_2 dan CH₄) berada pada jumlah maksimum. Semakin besar nilai ER maka konsentrasi combustible gas akan menurun sehingga mengakibatkan menurunnya nilai kalor (HHV) dari syngas. Hasil yang sama juga didapatkan dalam hasil eksperimen gasifikasi TKKS yang telah dilaporkan sebelumnya^(9,13). Sedangkan perbedaan ukuran partikel TKKS tidak menimbulkan pengaruh yang signifikan terhadap nilai kalor (HHV) syngas, dimana selisih HHV syngas hasil gasifikasi TKKS ber-diameter 8mm dengan 6mm hanya berkisar 0.01 -0.02 MJ/Nm³. Sementara itu, semakin besar nilai ER maka dry gas yield (Y) akan meningkat juga sebagai akibat dari bertambahnya jumlah volume udara yang masuk kedalam gasifier.

Simulasi Pengaruh Ukuran Partikel dan Equivalence Ratio dalam Proses Gasifikasi Tandan Kosong Kelapa Sawit : Sabar Pangihutan Simanungkalit, dkk.

Gambar 3. Komposisi syngas hasil gasifikasi, (a) 6mm, (b) 8mm

Tabel 3. Nilai kalor	(HHV)	dan	dry	gas yield
(Y) syngas				

ER -	6 mm		8 m	8 mm	
	HHV (MJ/Nm ³)	Y (Nm ³ /kg)	HHV (MJ/Nm ³)	Y (Nm ³ /kg)	
0.1	6.73	1.07	6.75	1.07	
0.15	5.14	1.39	5.16	1.39	
0.2	3.81	1.65	3.82	1.65	
0.25	2.86	1.92	2.87	1.92	

Kinerja gasifikasi

Tabel 4 menyatakan besarnya efisiensi karbon (η_C) dan efisiensi gasifikasi (η) hasil simulasi gasifikasi TKKS untuk setiap ukuran partikel TKKS dengan variasi ER, dimana besarnya η_C dan η (%) dihitung berdasarkan pers. (3) dan (4).

Untuk kedua ukuran partikel TKKS, semakin besar ER maka efisiensi karbon (η_C) akan semakin meningkat juga. Sementara itu, besarnya efisiensi gasifikasi (η) sangat bergantung pada HHV syngas hasil gasifikasi⁽¹³⁾, sehingga semakin besar nilai ER maka $\eta(\%)$ akan menurun seiring dengan menurunnya nilai kalor (HHV) dari syngas.

Tabel 4. E	fisiensi ka	rbon (η_C)	dan	efisie	nsi
	gasifikasi (η)			

ER —	6 m	6 mm		8 mm	
	η_{C} (%)	η (%)	η_{C} (%)	η (%)	
0.1	73.90	37.26	73.84	37.36	
0.15	87.72	36.96	87.67	37.09	
0.2	94.94	32.43	94.87	32.52	
0.25	100.00	28.45	100.00	28.46	

KESIMPULAN

Berdasarkan hasil simulasi, besar equivalence ratio (ER) ideal untuk proses gasifikasi limbah TKKS berbentuk pelet ber-diameter (ϕ) 6 mm dan 8 mm adalah $0,1 \leq ER \leq 0,2$. Variasi ER mempengaruhi HHV (*Higher Heating Value*) syngas hasil gasifikasi, efisiensi karbon (η_C), efisiensi gasifikasi serta distribusi temperatur dalam reaktor gasifikasi. Sedangkan variasi ukuran partikel tidak memberikan efek yang signifikan dalam proses gasifikasi.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada Pusat Penelitian Kimia – LIPI yang

telah menyediakan sarana dan prasarana dalam penelitian serta memberikan ijin untuk mempublikasikan tulisan ilmiah ini.

DAFTAR PUSTAKA

- M.S. Umikalsom, A.B. Ariff, H.S. Zulkifli, C.C. Tong, M.A. Hassan, M.I.A. Karim. The treatment of oil palm empty fruit bunch fiber for subsequent use as substrate for cellulose production by Chaetomium globosum Kunze. J. Bioresource Technology 62: 1–9 (1997).
- 2. Sub Direktorat Statistik Tanaman Perkebunan. *Statistik Kelapa Sawit Indonesia 2013*. Badan Pusat Statistik, Jakarta, 2013.
- 3. P. Basu. *Biomass Gasification and Pyrolysis: Practical Design and Theory*. Elsevier Inc., Oxford, 2010.
- A. Rajvanshi. Alternative Energy in Agriculture: Biomass Gasification, Vol. II, Ed. CRC Press, Maharashtra, 1986, pp 83–102.
- 5. T. Reed, A. Das. *Handbook of Biomass Downdraft Gasifier Engine Systems*. Biomass Energy Foundation, 1988.
- M.L. Hobbs, P.T. Radulovic, L.D. Smoot. Combustion and gasification of coals in fixed-beds. *Progress in Energy and Combustion Science* 19: 505–586 (1993).
- 7. Y. Yang, V. Sharifi, J. Swithenbank. Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds. *Fuel* 83: 1553–1562 (2004).
- P.R. Wander, C.R. Altafini, R.M. Barreto. Assessment of a small sawdust gasification unit. *Biomass Bioenergy* 27(5): 467–476 (2004).

- Z.A. Zainal, A. Rifau, G.A. Quadir, K.N. Seetharamu. Experimental investigation of a downdraft biomass gasifier. *Biomass Bioenergy* 23(4): 283–289 (2002).
- S. Murgia, M. Vascellari, G. Cau. Comprehensive CFD model of an airblown coal-fired updraft gasifier. *Fuel* 101: 129-138 (2012).
- 11. A. Rogel, J. Aguillon. The 2D Eulerian Approach of Entrained Flow and Temperature in a Biomass Stratified Downdraft Gasifier. *American Journal of Applied Sciences* 3(10): 2068-2075 (2006).
- C. Erlich, T.H. Fransson. Downdraft gasification of pellets made of wood, palm-oil residues respective bagasse: Experimental study. *Applied Energy* 88: 899–908 (2011).
- 13. P. Lahijani, Z.A. Zainal. Gasification of palm empty fruit bunch in a bubbling fluidized bed: A performance and agglomeration study. *Bioresource Technology* 102: 2068–2076 (2011).
- 14. S.P. Simanungkalit. Simulasi numerik proses gasifikasi limbah tandan kosong kelapa sawit. J. Ketenagalistrikan dan Energi Terbarukan 12(1): 11 – 20 (2013).
- 15. ANSYS Inc. ANSYS FLUENT User's Guide. Technology Drive, Canonsburg, 2011.
- 16. R. Xiao, M. Zhang, B. Jin, Y. Huang. High-temperature air/steam-blown gasification of coal in a pressurized spout-fluid bed. *Energy & Fuels* 20: 715-720 (2006).
- 17. F.V. Tinaut, A. Melgar, J.F. Perez, A. Horrillo. Effect of biomass particle size an air superficial velocity on gasification process in a downdraft fixed bed gasifier: An experimental and modeling study. *Fuel Processing Technology* 89: 1076-1089 (2008).

18. I. Narvaez, A. Orio, M. Aznar, J. Corella. Biomass gasification with air in an atmospheric bubbling fluidized bed: Effect of six operational variables on the quality of the produced raw gas. *Ind. Eng. Chem. Res.* 35(7): 2110–2120 (1996).

JKTI, Vol. 17, No. 2, Desember 2015